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Forcing has been introduced by Cohen to prove the independence of the Continuum Hy-
pothesis in set theory. The main idea is to build, from a model M , a new model M ′ for which
validity is controlled by a poset of forcing conditions living in M . Later, categorical ideas
have been used by Lawvere and Tierney [10] to recast this construction in terms of topos of
presheaves. It naturally gives rise to a proof-relevant forcing working on categories of conditions
rather than simply posets.

Recent years have seen a renewal of interest for forcing, driven by Krivine’s classical real-
izability [7]. In this line of work, forcing is studied as a proof translation, and one seeks to
understand its computational content [9, 2], through the Curry-Howard correspondence. Fol-
lowing these ideas, a forcing translation heavily based on the presheaf construction of Lawvere
and Tierney was defined in [5] for the Calculus of Inductive Constructions (CIC). The main
goal was to extend the logic behind Coq with new principles, while keeping its fundamental
properties: soundness, canonicity and decidability of type-checking. This approach can be seen,
following [1], as type-theoretic metaprogramming.

However, this technique suffers from coherence problems, which complicate greatly the trans-
lation. More precisely, the translation of two definitionally equal terms are not in general defi-
nitionally equal, but only propositionally equal. Rewriting terms must then be inserted inside
the definition of the translation. If this is possible to perform, albeit tedious, when the forcing
conditions form a poset, it becomes intractable when we want to define a forcing translation
parametrized by a category of forcing conditions.

We propose a novel forcing translation for the Calculus of Constructions which avoids these
coherence problems. Departing from the categorical intuitions of the presheaf construction, it
takes its roots in a call-by-push-value [8] decomposition of the previous translation. Through
this decomposition, the new translation is call-by-name, while the previous one one is call-by-
value. This is easily seen in the translation of dependent products where the type Πx : A.B is
interpreted at level p as Πq ≤ p.Πx : [[A]]q. [[B]]q in call-by-value v.s. Πx : (Πq ≤ p. [[A]]q). [[B]]p
in call-by-name. Here, the argument x is boxed under a quantification, which corresponds to
the fact that it will be evaluated only when needed.

Assuming the forcing category verifies categorical laws definitionally, we get the following
main result.

Call-by-name forcing provides the first effectful translation of the Calculus of Constructions
into itself which preserves definitional equality.

The requirement on the forcing category is actually not an issue, as we can make any category
abide by these definitional laws thanks to a type-theoretic Yoneda embedding.

This translation extends to inductive types by exploiting storage operators [6], an old idea
of Krivine to simulate call-by-value in call-by-name in the context of classical realizability, to
restrict the power of dependent elimination in presence of effects. The necessity of a restriction
should not be surprising and was already present in a similar work by Herbelin [4]. In a
nutshell, the typing system requires to purify a term of an inductive type before letting it flow
into types. Morally, this is done by ensuring that dependent pattern-machings are typed with
other pattern-matchings, e.g. for the Σ-type elimination:
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Γ ⊢ M : Σx : A.B Γ, z : Σx : A.B ⊢ C : □ Γ, x : A, y : B ⊢ N : C{z := (x, y)}
Γ ⊢ match M with (x, y) ⇒ N : match M with (x, y) ⇒ C{z := (x, y)}

The original CIC can be retrieved by adding an η-law on inductive types which is not
preserved by the translation. Actually, the translation allows to build non-canonical inhabitants
of inductive types and thus negates this η-law. Hence,

Call-by-name forcing provides the first version of CIC with effects.

The nice property of preservation of definitional equality is emphasized by the implementation
of a Coq plugin1 which works for any term of CIC, assuming it complies with the restricted
typing rules.

By using forcing, we produced various results around homotopy type theory. We proved that
functional extensionality is preserved in any forcing layer. We also showed that the negation
of Voevodsky’s univalence axiom is consistent with CIC plus functional extensionality. This
statement could already be deduced for the existence of a set-based proof-irrelevant model [11],
but we provided the first formalization of it, in a proof relevant setting, and by an easy use
of the forcing plugin. Under an additional assumption of parametricity, we showed conversely
that we get the preservation of the univalence axiom.

This is a first step towards the use of the category of cubes as the type of forcing conditions
to give a computational content to the cubical type theory [3] of Coquand et al. in Coq, and
in particular to the univalence axiom.
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1Available at https://github.com/CoqHott/coq-forcing.
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